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Abstract--A model for a single fully developed bubble moving in an unbounded fluidized bed is presented. The 
model allows bubble growth or shrinkage during the rise inside the bed, as well as dependence of the rise 
velocity upon specified bed parameters. Limiting cases of nearly spherical bubbles and of sufficiently large 
bubbles whose form resembles that of a spherical segment are considered in more detail. The form of bubbles 
rising in either fluidized beds or one-phase liquids, and its dependence on the effective "surface tension" acting 
on the bubble boundary are discussed. 

1. INTRODUCTION 

Real particulate beds fluidized with a gas or even with a dense liquid are usually non-uniform in the 
sense that spontaneous formation of voids filled mainly with the fluidizing fluid and containing no 
particles takes place (e.g. Rowe & Partridge 1965; Rowe 1971). Sometimes such voids or "bubbles" 
are provoked artificially by injecting a pulse or a jet of the fluid into a bed. In both cases the 
behaviour of resulting bubbles has much in common with that of a large bubble rising through an 
extended liquid studied firstly by Davies & Taylor (1950). While travelling in a bed those bubbles 
favour intensification of the mixing of both the dispersed solid phase (Rowe, Partridge, Cheney, 
Henwood & Lyall 1965; Potter 1971) and the continuous fluid phase (Davies & Richardson 1966; 
Partridge & Rowe 1966) and influence, thereby, heat and mass exchange processes in the bed. This 
stimulated rather intensive and systematic study of fluidization bubbles during the last decade. 

The first model of a bubble in an extended uniform fluidized bed was suggested by Davidson 
(1961) who considered simultaneously the irrotational flow of a continuum representing the 
particulate phase around the bubble, and the filtration of the interstitial fluid within a porous body 
formed by moving particles (see also Davidson & Harrison 1963). Jackson (1963) accepted a 
hypothesis that there is a strict analogy between large bubbles in fluidized beds and in liquids and 
endeavoured to analyze additionally the bed structure in the vicinity of the bubble upper surface. It 
has to be noted in this connection that there are no direct unequivocal foundations for such an 
assumption so that his results have to be regarded as tentative and purely suggestive in nature, 
despite a certain success in confirmation of some his conclusions by experiments in Lockett & 
Harrison (1967). Another model of the steady motion of a single bubble was brought into existence 
by Murray (1965) who used a modified O seen technique when considering the flow around two- or 
three-dimensional bubbles. 

All these models were carefully examined and compared with experimental evidence and 
among themselves. They were also developed in such a way as to include into analysis 
non-stationary effects accompanying initial motion of bubbles (Murray 1967; Collins 1971), the 
interaction with other bubbles and with walls of a container (Collins 1969; Clift, Grace, Cheung & 
Do 1972), pecularities of the fluid flow through both the bubble and the adjoining cloud with closed 
circulation patterns (Hargreaves & Pyle 1972), etc. 

Comparison with experimental data showed these theories to be sufficiently adequate in the 
matter of correct qualitative description of many fundamental bubble properties. There are, 
nonetheless, systematic deviations of theoretical conclusions from observed phenomena. Thus, 
the permanent growth or contraction of rising bubbles has not hitherto been explained; there is no 
sound explanation for the dependence of the rise velocity upon bed parameters such as the 
fluidization velocity and the bed voidage (porosity); it is unknown so far what possible reasons are 
responsible for the bubble form, and so on. Moreover, there exists an inherent defect characteristic 
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of the theories mentioned, which lies in presuming the bubble form to be given a priori, whereas it 

ought to be found from the solution of the corresponding mathematical problem. 
In what follows, an attempt is made to revise the formulation of the boundary problem for a 

fully developed fluidization bubble and to construct a new physical model which would account for 
some additional factors affecting its behaviour. In order to make the consideration as simple and 

comprehensible as possible and to leave the key ideas unencumbered with laborous calculations 
and other non-essentials, attention is primarily focused on the principal aspects of the model, and 
certain simplifying assumptions are brought into action. Various conventional problems which 

may be looked upon as irrelevant to the predominant aim of the model formulation are also 
disregarded, whether such problems are of practical significance or not. For example, attention is 

paid neither to solids nor to fluid flow patterns around and within the bubble under study, although 
the corresponding streamlines could be readily computed by standard methods. 

2. FORMULATION OF THE PROBLEM 

To describe the flow of both particulate and fluid phases outside a single bubble moving in an 
otherwise uniform extended fluidized bed, one must use equations of mass and momentum 
conservation for the phases of a concentrated suspension. A set of such equations was rigorously 
derived in Buyevich & Markov (1973) under a condition of weak pulsating motion of the fluid 

and particles. In the Eulerian approximation when viscous stresses are neglected those equations 

can be written as follows: 

div(ev) = O, div(pw) = O, {2.1] 

doe(O/ot + vV)v = - V p  + dog - f (p ,  u), [2.2] 

dip (0/ot  + wV)w = p(d,  - do)g + f(p, u), [2.3] 

where p is the mean fluid pressure, v and w are the mean velocities of the fluid and particulate 
phases, respectively, e and p = 1 - e  are the bed voidage and the volume concentration of 

particles, do and d, are the densities of the fluid and particle material, g is the gravity acceleration 

vector and f(p, u) is the interphase interaction force per unit volume of the mixture depending on 

the relative interstitial fluid velocity u = v - w  (a superficial velocity commonly used equals Eu). 
When dealing with [2.1]-[2.3], the phases are considered as co-existing interpenetrating continua. 

If do ~ dl these equations turn into those used earlier by Jackson (1%3) and Murray (1%5). 
Equations [2.1]-[2.3] are somewhat insufficient because random pulsations of the fluid and 

particles ("pseudo-turbulence"), which have been shown by Buyevich (1971, 1972b) to exert an 
essential influence on rheological properties of a fluid-solid mixture, are completely unaccounted 
for. An analysis based on the evaluation of various pseudo-turbulent characteristics in Buyevich 

(1972b) testifies that the most important consequence of pulsation consists in the appearance of 

additional stresses affecting the average flow of both phases. The effect of the pseudo-turbulence 
on "quasi-viscous" stresses is of no interest here because of utilization in the treatment of the 
Eulerian approximation. Thus, only extra normal stresses have to be introduced in addition into 
[2.1 ]-[2.3]. Note that experimental measurement of normal stresses in a fluidized bed was reported. 

for instance, in Meissner & Kusik (1970). 
The equilibrium normal stress tensors Po~ and P~= prescribed to the fluid and particulate phases. 

respectively, are realized in a uniform steady flow when E, v and w do not depend on time and 
coordinates. They represent single-valued tensor functions of E (or p) and u which were calculated 
for a special case of a suspension with comparatively small particles in Buyevich (1972b). Real 
flows, particularly those around moving bubbles, are usually unsteady and non-uniform. To find the 
normal stress tensors Po and P, for such a "non-equilibrium" state, one must solve the kinetic 
equation for suspended particles derived by Buyevich (1972a). Thus, there are in a general case 
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eight scalar equations for eight unknown functions e, p, v~ and w~. These equations involve the 
tensors Po and P1 whose dependence on the above functions is to be found after solution of an 
additional (kinetic) equation, so that a rather complicated mathematical problem arises. 

Other stresses occur in the particulate phase due to direct contacts between adjoining particles. 
These stresses, whose origin is in principle the same as that of stresses in granular solids, are 
negligible for a system of freely suspended particles, so that they vanish in the equilibrium state far 
away from a bubble. However, the situation may well be different in the bubble vicinity where 
permanent particle contacts are eventually possible due to changes in the fluid flow distribution 
accompanying preferable fluid transfer through the bubble, rather than through surrounding 

volumes of the bed. In other words, the bubble exerts the "draining" influence upon the bed forcing 
the particles to be brought closer together, and the additional stresses to appear. 

It is hardly possible nowadays to derive an exact and rigorous solution of such a problem 
without further simplifying suggestions. A natural way of overcoming this difficulty might consist 
in constructing a suitable system of successive approximations and consecutive investigation of 
the corresponding results. For the main purposes pursued in this paper it is quite sufficient to treat 
only the lowest approximation which has to be chosen, of course, so as not to violate the physical 

meaning of the problem. 
As a first approximation we consider the "incompressible" flow of the particulate phase 

occurring when the bed voidage is uniform. Acceptance of this assumption meets with two serious 
complications. First, this reduces the number of unknown variables involved in the equations so 
that one of the latter appears to be superfluous and, second, the kinetic equation becomes then 
rather meaningless because of damaging the basic philosophy laid in its foundation. The first 
difficulty was in fact encountered by Murray (1965), for the assumption of incompressibility proved 
to be consistent only with the linearized set of equations in his paper. Obviously, one should 
account above all for the fact that the Murray's original equations do not permit this assumption to 
be made and regard its consistency with the linearized set as an accidental piece of luck rather than 
an intrinsic feature of the linearization procedure. It is therefore evident that a thorough 
consideration is sorely needed before assuming E to be constant. 

The first difficulty can be resolved if one takes into consideration that the assumption of 
incompressibility of the particulate phase flow requires the effective pressure of this phase to be 
regarded as an independent variable. This is an irrevocable condition of self-consistency of such an 
assumption, and the situation resembles in this respect that encountered in the conventional 
hydrodynamics of one-phase media. The requirement of constant porosity can be perforce 
imposed upon the system under study provided that a reason leading to its actual satisfaction is 
simultaneously brought into action. Physically, it is quite clear that the only possible reason 
opposing particles which tend to group together or to form a loosened structure, consists in the 
interparticle interaction being effected either by way of their direct contacts or through the fluid 
pressure and velocity fields in the interstitial space. The simplest and, perhaps, most sensible 
manner to account for this interaction is to introduce into the equations the effective particulate 
phase pressure, as was done previously by Davidson & Harrison (1963). Note in this connection 
that Murray (1965) not only could but also should involve such a pressure in his analysis. 

The normal stresses resulting from particle pulsations certainly contribute to this pressure. 
However, the latter is already considered as an unknown variable subject to determination while 
solving the governing equations. Therefore, there is no need to look for these stresses in an explicit 
form and, consequently, to bother with the kinetic equation. It is sufficient to include formally the 
relevant longitudinal (i.e. directed along u) component of these stresses into this variable. 
Analogously, the longitudinal fluid normal stress caused by pulsations can be added to the 
unknown fluid pressure p. The corresponding lateral components can be neglected altogether 
because they are small compared with the longitudinal ones (Buyevich 1972b). Thus, the second 
complication above-mentioned is effectively avoided. 

Several assumptions are further made in order to simplify the calculation. First of all, a linear 
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relationship 

f(p, u) = p / 3 K u ,  K = K ( p )  [2.4] 

is supposed to be valid,/3 being a constant depending on physical parameters of the phases and 

K (p) equalling unity for a dilute system (p ~ 0) and monotonously increasing as p grows. Both/3 

and K are regarded as known quantities following from either theory or experiment. Strictly 
speaking, [2.4] is true for beds of very fine particles when the Reynolds number is smaller than 

unity. It was nevertheless applied, because of its simplicity, even to beds of fairly large particles 
whose Reynolds number markedly exceeds unity in all papers on the topic of which the author is 

aware. In that case [2.4] has to be looked upon as a convenient approximate formula. 
We suppose the flow to be irrotational everywhere outside the bubble under consideration and a 

possible wake region behind it. And, last, we imagine the flow around the bubble to be almost 

stationary and neglect time derivatives in [2.2] and [2.3]. The latter assumption is easily conceivable 
if the bubble preserves its own volume as happens with bubbles in a liquid when phase transitions 
are absent. However,  this is not the case in the present situation since there are no sound reasons 

preventing a fluidization bubble from changing its volume. The stationarity condition is 

approximately true if the rate of volume changing is sufficiently small. This means the velocity of 
the bubble surface relative to its gravity centre is well below the rise velocity. 

By accounting for all these assumptions and introducing into [2.2] and [2.3] the normal stresses 
one is able to rewrite those equations in the following form: 

V(~ doer - )  = - V ( p  + P o -  dogr) - p / 3 K u  

V ( 2 d , p w  2) = - V(  P ~ - p (  d,  - do)gr) + p/3K u. 

[2.51 

[2.61 

Here Po and P, denote the longitudinal normal stresses in the fluid and particulate phases, 
respectively, and [2.4] is used. These equations together with [2.1] serve for determination of eight 
functions p + Po, P, ,  v, and w,. Note that the lateral normal stresses due to the pseudo-turbulence 

fall out the analysis in accordance with the remark above. 
Equations of the same kind as [2.5] and [2.6] were actually used previously in Davidson & 

Harrison (1963). There, a moment contribution due to local momentum exchange processes which 
may be loosely termed as an "interparticle" interaction was intuitively included into the analysis in 
a similar manner. In this respect equations in Davidson & Harrison (t963) are physically more 

correct than those in Jackson (1963) and Murray (1965) because the latter do not involve the 
particulare phase "pressure" P, and a difficulty consisting in a lack of one unknown variable arises 

on condition of constant voidage. 
It is advisable to introduce potentials & and tO for the particulate phase flow and for the fluid 

filtration within interstices, respectively, 

w = V~b, v = V(05 + tO). [2.71 

Then [2.1], [2.5] and [2.6] yield 

AO = 0, ~to = 0, [2.81 

o/3Kto = - Ho = II,, [2.91 

where effective dynamic pressures Ho and H, are defined as follows: 

Flo = p + Po  + ½ d o r y  2 _ dogr, 

l i t  = P~ + ½ d , p w 2 -  p ( d ,  - do)gr. 

[2.10] 

[2.11] 
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Equations [2.7]-[2.11] give an opportunity to investigate all the quantities of interest. Obviously, to 
describe the fluid flow inside the bubble under consideration one must use the conventional 
Eulerian equations for a homogeneous one-phase medium. 

We consider a bubble whose surface is determined in a given moment by a relation 

r = ro(O)= a[1 + ~(0)], ~(Tr)= O, [2.12] 

written in a co-ordinate system connected with the bubble (see figure 1). In accordance with the 
above assumption that the flow differs from the stationary one only slightly, one may neglect the 
dependence of parameters in [2.12] upon time while solving the hydrodynamic problem. 

In the laboratory system of co-ordinates the velocity w is presumed to be zero far from the 
bubble so that one has in the "convective" co-ordinate system used 

V(~b + 6) = v= = u= + w=, V~b = w=, r-~oo, [2.13] 

where w= is a vector to be determined afterwards. Similarly, 

p + P o = p = + P o = ,  PI =PI=,  r ~ .  [2.14] 

Here p® and u= are the pressure and the interstitial velocity far away from the bubble given by 
obvious relations following from [2.5] and [2.6], 

p= = (doe + d,p)gr, u= = -([3K)-'(d, - do)g. [2.15] 

The equilibrium functions Po~ and P~= can be represented on the basis of the results in Buyevich 
(1972b) as 

PO~ 1 2 1 2 = ~doELou , P~= [2.16] =~d~pL~u , r - ~ ,  

where Lo and L t are functions of E, their order of magnitude being unity for values of E usually 
encountered in fluidized beds. It follows from [2.10] and [2.11] and [2.14]-[2.16] 

I'[o ~ 1 2 IIo~ = ~doe(V= + L o u = 2 ) + p ( d ~ - d o ) g r ,  r ~ o o ,  [2.17] 

II ,  = II,= = ½d,p(w=2 + L , u ® 2 ) -  o ( d , -  do)gr , r ~oo.  [2.18] 

Equations [2.13] and [2.17], [2.18] give boundary conditions which have to be satisfied at large 
distances from the bubble. 
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Figure 1. Schematicrepresentationofthebubbleandwakeregion. 
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Now we proceed to formulation of boundary conditions at the surface F' enclosing both the 
bubble and the adjoining wake region and at the bubble surface F (figure 1). Clearly, the normal 
component of the velocity of the particulate phase at F must coincide with that of the surface F 
itself. Supposing that the bubble is growing or shrinking without changes in its form we get 

a~ _ ro( O ) 
a~- W°ro-~)= wo[l +~(0)1, r E F .  [2.19] 

Here Wo is an unknown quantity representing the velocity of the critical frontal point r = a, 0 = 7r 

on the bubble surface. This quantity can be found from a condition of volume conservation written 
in the form 

[2.20] 

This condition is representative of the fact that there are no sources or sinks inside the bubble. Note 
that integration over F in [2.20] may be substituted by integration over any closed surface 
surrounding the bubble. 

A necessary physical condition enabling a sharp boundary between the bubble and the ambient 
fluidized bed to exist requires the effective "pressure" of a continuum, modelling the particulate 

phase, to vanish at the boundary; that is P, must equal zero. Keeping in mind that 

17o + II, = IIo~ + II,~ = const [2.21] 

follows from [2.9] and calculating the constant in [2.21] with the help of [2.17] and [2.18], one 
obtains after accounting for [2.9] and [2.11] 

I d . 2 2 1 2 P,  = ~ oe t w  + Lou~ ) + ~d,p (w~ - IV~b 12 + L1 u f )  + t9 (dl - do)gr + pflKO = O, r E F  
[2.22] 

Conditions of continuity of the fluid flux and normal stress at the bubble surface must be 

satisfied, the motion of the surface itself being taken into account. Considering that the treatment 
of the flow inside the bubble is irrelevant to the intended purpose of the paper, one is free to 
disregard the former condition. The latter takes the form 

Ho - + = C, r E F [2.231 

where C is a constant. This condition results from the fact that the resistance to fluid filtration 
through a porous body formed by particles is much greater than that to the flow within the bubble 
where particles are practically absent. Therefore, the dynamic fluid pressure is approximately 
constant throughout the bubble as compared with a similar quantity outside the bubble. Equation 
[2.23] was confirmed by experiments in Reuter (1963). 

When there is no wake behind the bubble, the boundary problem for [2.8] with conditions [2.13], 
[2.19], [2.20], [2.22] and [2.23] is consistent. It is easy to see that in this case there is a superfluous 
boundary condition at F which must be satisfied at the expense of the corresponding choice of the 
form of F, i.e. of [2.12], and determines as well the constants involved. The situation is more 

complicated when F' does not coincide with F; that is there exists a wake where the flow of both 
phases is undoubtedly rotational, and the equation for ~b in [2.8] is not defined everywhere within 
the bed. Thus the above formulation is clearly deficient in that the motion inside the wake falls out 
of the analysis altogether. However, as will be seen later, it becomes possible to draw important 
conclusions even in this case. 
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3. BUBBLES WITH NO WAKE 

We begin with consideration of a nearly spherical bubble assuming the wake region to be absent 
or negligible. Such a bubble can be regarded as an idealized preliminary model for real bubbles 
occurring in practice, especially for comparatively small bubbles rising through a uniformly 
fluidized bed of line particles. All the previous analyses of three-dimensional bubbles were 

essentially restricted to study of spherical bubbles. 
The function ¢((9)~ 1 in [2.12] can now be used as a small parameter for formulation of a 

calculation scheme. As a first approximation, fairly sufficient for the present purposes, we take the 
flow near a sphere with the radius a, ¢((9) being identically equal to zero. Solving [2.8] with 

conditions [2.13], [2.19] and [2.23] yields 

( a~) a 2 
4) = w® 1 + r cos (9 - wo-- 7 , [3.1] 

l doE(V®2 + Lou 2) ( a 3) 2 

= - 2  p~BK u= 1 - 7  r cos 0 + C~- [3.2] 

By calculating v and w from [2.7] and using [2.20] one obtains 

Wo-- aC. [3.3] 

Let us introduce parameters 

= flKC 2 = w=2 u® 
a (d~-  do)g' Y (1 -  do/dOga' S=--w~ [3.4] 

Equations [2.22] lead then to a requirement 

2(cos O + a) + ~/2(1 -~- sin" O + (L , - e2a2)s 2) = O, [3.5] 

which should be fulfilled over the whole surface r = a. Evidently this is not the case because, as is 
being discussed in section 2 the bubble form has to be determined while solving the problem and 
cannot be chosen beforehand. Therefore, following a general method by Davies & Taylor (1950) we 
shall require equation [3.5] to be satisfied only at the critical frontal point on the bubble surface and 
in its nearest vicinity. By equating the first and second terms of the expansion of [3.5] in degrees of 
sin 2 0 at O ~ ~r to zero, we get 

2 4 7 2 "/ =~ ,  Ot = ~ - , } ( L 1 - E 2 a 2 ) $  2. [3.6] 

The velocity of the bubble gravity centre xc in the system of co-ordinates shown in figure 1 
equals zero in the case under study so that w® coincides with the rise velocity U of the bubble, i.e. 
from [3.4] and [3.6] an equation follows 

2 / [  do\ \112 
w~ = U = ~ k k l - - ~ j g a  ) . [3.7] 

This is the well-known Taylor's formula for the velocity of a large bubble or drop rising in an 
unbounded liquid. For fluidization bubbles the same formula was derived by Davidson & Harrison 
(1963) and others. 

The second equation in [3.6] has two roots, only one of them remaining finite at all s. The latter is 

9 [ [ .2 8 2 2/'7 2_ 2\-I ) 
[3.8] 



dV 3~ O+ 2 
d--}- = - e  )v ~ r  d F =  4~ra c~eu~. 

the constant C being defined in terms of c~ in accordance with [3.4]. Thus, all the wanted 
parameters are expressed through known quantities by [3.3], [3.7] and [3.8] and this defines 
completely the potentials (b and ~ in [3.1] and [3.2]. 

The quantity a characterizes the rate of change of the bubble volume during its motion in the 
bed. Really, by taking into account [2.15] one derives 

[3.91 

0 - 9  

Usually e -~ 0.4-0.5, L, - 1 so that only s defined in [3.4] substantially affects the quantity a. The 
latter is a monotonously decreasing function of s and changes its sign at s = s . ,  

s ,  = (7/2 L, )'/~. [3.10] 

(see a curve a = a (s) drawn for E -- 0.4 and L, = 1 in figure 2). The corresponding critical value of 
the bubble radius is 

9L ~ u f  
a * =  14 ( l - d d d , ) g  [3.11] 

([3.4], [3.7] and [3.10] were used). 

Hence it follows that a bubble of constant volume is unstable, it is either growing or shrinking 
when moving in the bed. There exists a critical value of the bubble volume such that larger bubbles 
grow and smaller ones vanish when rising. If one remembers the meaning of the parameter s from 

[3.4], one may conclude that the lower the ratio of the interstitial fluidization velocity to the rise 
velocity, the higher the growth rate parameter a. The effect of changing of the bubble volume is 
apparently associated with the necessity for a moving cavity to maintain equilibrium at its 

boundary with a two-phase mixture. It appears that the static equilibrium is impossible and the 
velocity of the particulate phase at the bubble surface adjusts itself in such a way as to meet 
conditions required for existence of the state of dynamic equilibrium. A similar point of view was 

intuitively adopted by Rowe & Matsuno (1971) who attributed this effect, however, to lack of 
equilibrium between the fluid inside the bubble and the interstitial fluid. 

It is possible to observe this effect in practice on condition that s is sufficiently large, that is the 
bubble is small and the bed particles are rather coarse and require a high fluid flow-rate to fluidize 
them. Vanishing of small bubbles was indeed reported by Davies & Richardson (1966). Similar 
results were obtained by Rowe & Matsuno (1971) who produced bubbles artificially, by means of 

injecting air pulses into fluidized beds. The latter observations confirm that the form and rising 
velocity of small bubbles do not vary with the flow-rate. 

0 . 6  

0 . 5  
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Figure 2. Effect of the velocity ratio s on the parameter c~ determining the bubble growth rate. 
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Let us now assume ~(0) to be small as compared with unity but different from zero. Then one 
can choose some suitable analytical expression for ~ (0) depending on a certain number of arbitrary 

constants. The functions [3.1] and [3.2] are to be regarded as the first approximations to the real 

potentials. To determine deviations of the latter from the former, one needs to solve a typical 
problem of regular perturbations. Really, it is easy to derive on the basis of the above formulae two 

independent problems 

a~4, =o, 84, =0(r-o~), 084,_ / a~4,+ ) Or - ~ , - a 7  Wo ~, (r = a), [3.12] 

a~0 
A6O=0, ~tk=0(r-->oo), 6 q J = - a ~ r  , ( r=a) ,  [3.131 

which can be solved in a trivial manner. The solution of [3.12] and [3.13] depends upon the arbitrary 

constants in the definition of ~:(0) which have to be chosen so as to ensure [2.22] to be satisfied not 
only near the critical point but also at other points on the bubble surface, the number of points being 

equal to that of the constants. This provides equations for actual calculation of these constants in 

the same way as equations [3.6] provide for determination of U and d V/dt. One may hope to obtain 
an approximate solution differing rather slightly from the exact one by increasing the number of 
arbitrary parameters in ~(0). 

4. LARGE BUBBLES 

Consider now a large bubble whose form can be approximately visualized as that of a spherical 

cap with the semi-vertical angle ~- - 0 ,  subtended at the centre r = 0 as shown in figure 1. There is a 
wake region behind the bubble where something like a closed circulation flow of the particulate 
phase occurs. The surface F' enclosing both bubble and wake can be roughly regarded as a sphere 
whose radius coincides with the curvature radius a of the bubble upper boundary. The same idea is 

usually adopted for large bubbles rising through extended liquids (Davies & Taylor 1950). The 
gravity centre of the bubble is placed at the distance xc above the apex r = 0 and 

3 1 - cos z 0 ,  + cos 4 0 ,  
xc = aF(O,),  F(O,)  = ~ (1 + cos 0,)2(1 - 0.5 cos 0,)" [4.1] 

The bubble volume 

V 4 3 1 = ~IrK(0,)a , K(0,) =½(1 +cos 0,)2(1-~cos 0,), [4.2] 

so that K (O,) plays a role of the fraction by volume occupied by the bubble within the sphere r = a. 
It is evident that the rise velocity U defined as the velocity of the bubble gravity centre in the 

laboratory co-ordinate system is related to the velocity w~ as follows: 

U = w=+ w~ = w=+ Wo~= w=+ woF(O,), [4.3] 

where wc is the gravity centre velocity in the co-ordinate system moving with the origin r = 0, 
F(O,)  being defined in [4.1]. An obvious inequality 

U - w~ >> wo ~ u~ [4.4] 

holds true for sufficiently large bubbles. 

The particulate phase flow is irrotational only outside F', a boundary condition on F' being 



346 YC A. BUYEV1CH 

unknown. However,  this difficulty can be avoided if one obtains, by making use of [4.4], an 
approximate expression for ~b valid in the vicinity of F' 

3 

4) ~ w~ (1 +2--~)r cos O, r ~ a. [4.5] 

Generally speaking, this equation is derived while neglecting terms of the order of u=/U which are 

due to the unknown normal component of the particulate phase velocity on F'. The corresponding 
error in an expression for IV(/)12 appearing in [2.22] can still be shown to be of the order of u=2/U ~ 

On the contrary, far away from the bubble one has 

2 

4)~ w~r cos 0 - K(O,)wo~-  , r >> a, [4.6] 

2 

~-~ - u~r cos 0 + C a , r >> a, [4.7] 
r 

the latter terms in [4.6] and [4.7] describing a symmetric radial flow of both phases due to a change 
in the bubble volume and r ( O , )  being expressed in [4.2]. 

By taking into account [2.20], [4.6] and [4.7] and performing the integration in [2.20] over a 
sphere of a large radius r >> a, one derives instead of [3.3] 

E 
Wo = K-~, )  C. [4.8] 

It is quite natural to neglect terms of the order of u= 2 as compared with those of the order of U z2 

when writing [2.22]. Hence an equation 

9 2(cos 0 + ~) + 3,2(1 - z sin 2 0) = 0 [4.9] 

results, [4.5] being accounted for and the parameters a and 3, being determined in [3.4]. This 
equation replaces [3.5] and its error is of the order of u= 2/U 2. By considering, as before, the terms 
proportional to unity and sin 2 0 in the expansion of [4.9] one obtains further 

2 4 7 7 = [4.101 

instead of [3.6]. From [4.3], [4.8] and [4.10] an expression for U follows 

2 ( (  do\ '~/~ v=~ 1-zjga) +*(o,)~u~, 0(o,) =F(°*) 
K(O,) " 

[4.11] 

According to [4.11] the rise velocity of real, large bubbles in a fluidized bed deviates from that of 
large bubbles in a liquid of the same density. The former velocity tends, nevertheless, to the latter 
as the bubble radius grows so that the corresponding ratio u~/U decreases. This conclusion agrees 

well with the analysis of experimental data presented in Murray (1965). It follows from [4.11] that U 
increases when ~ ( 0 , )  and ~u~ grow, in conformity with some experimental results (see, e.g. Rowe 

& Partridge 1965). 
Note that [4.1 l] is obtained under the condition u~/U ~ 1. However,  the second term on its 

right-hand side can be significant even in this case because • is large (see below). If u~/U ~ O. 1 and 

Eq~ = 1-2, the velocity of bubbles in a fluidized bed is about 10-20% higher than that for bubbles 

in a pure liquid. 
The rate of volume change is given by [3.9] with a = 7[9. Bearing in mind that U = dH/d t ,  H 
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being the vertical coordinate of the bubble gravity centre in the laboratory system of co-ordinates, 

one derives from [3.9] and [4.11] an equation 

dV 14~'[ d~ ,~,12 cuba312 ,, d ~ ),12 eu= VII2 
dH = 3 ~ , ~ }  ~ = ' ( ;  ((K(O,)g) 'r' [4.12] 

which is accurate to terms of the first order in u=/U. This quantity was experimentally investigated 

by Davies & Richardson (1966) who concluded dV/dH to be a linear function of V. This 
conclusion contradicts [4.12], but a careful perusal of experimental results in the paper cited shows 
that experimental points can be correlated with curves dV/dH ~ V 112 with the same success as 
with curves dV/dH ~ V. Examples of such a correlation are shown in figure 3 where co-ordinates 
V and H are used, theoretical curves V -/_/2 following from [4.12]. Note that results in Davies & 

Richardson (1966) confirm also the linear dependence [4.12] of the quantity dV/dH upon the 

superficial velocity eu®. 
In order to determine the potential ~ one needs to solve the Laplace equation in [2.8] under 

conditions 

V~=u~(r~>a), ~ = C ( r e F )  [4.131 

resulting from [2.13], [2.23] with C expressed in terms of a = 7/9 in accordance with [3.4]. Here we 
do not consider this problem; its solution is apparently needed, however, for investigation of the 
fluid streamlines. 

Equations [4.11] and [4.12] contain an unknown angle 0 ,  determining a relation between the 
curvature radius of the bubble upper surface and the bubble volume. To find it we use a rather 

simple reasoning based on the mental consideration of apossible iteration procedure aimed to 
determination of the potential ~b of the particulate phase flow in a case when the surface P' differs 
slightly from a spherical one. Such a procedure can be constructed in the following manner. 
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Figure 3. Comparison of theoretical dependences H 2- V with experimental data in Davies & Richardson 
(1966) on air-fludized beds of irregular craker catalyst particles of mean diameter 0.0055 cm. (a) 

~u. = 0.252 cm/sec; (b) ~u® = 0.332 era/see. 
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Let the sphere r = a be the zeroth approximation to the real surface F' which may be now 
defined with the help of [2.12]. Then ~:~°~(0) = 0 and the potential is given by [4.5]. At the surface 
[2.12] with ~(0)=  £"~(0) we have 

Co) 3 
~h = ~ w ~ a ( 1  - ~:"~(0)) cos O, [4.14] 

[V~b~°~[ 2 = ] w=2(1 - 2~"~(0)) sin 2 O, [4.15] 

superscripts designating the interaction numbers. Introducing [4.14] and [4.15] into [2.22] enables 

us to find ~:"~(0) corresponding to the common part 0 > 0 ,  of F and F' as a solution of this equation. 
Let us imagine further ¢"~(0) to be also extrapolated to smaller values of 0 in a certain suitable way 

which is of no special interest here. Considering further a problem for the potential & ~) outside the 

surface F' defined with the help of ~:"~(0) we are in principle able to obtain an expression for ~ ~'~, to 
use in [2.22] again and to calculate the second approximation ~:(2~(0), and so forth. This procedure is 

evidently regular and self-consistent and resulting successive problems resemble the problem 
[3.12], if ¢"~(0) and other iterations are actually small compared with unity. 

Having in mind to evaluate the critical angle 0, ,  it is fairly natural to identify it with just an angle 

when the condition of smallness of ~:")(0) ceases to hold. By making use of [4.14] and [4.15] instead 
of [4.5] one gets the following equation 

2[a + (1 + s ¢<') cos 0 ] + 3/21t - 9(1 - 2~ :(',) sin 2 0] = 0, [4.16] 

with a and 3/ being already expressed in [4.10]. This equation replaces [4.9] and reflects the 
influence upon the momentum balance at the bubble surface of slight deviations of this surface 

from a sphere. According to the iteration procedure suggested above, it must serve for the 
determination of the function ~1~(0). By resolving [4.16] and accounting for [4.10] one obtains 

~'~(0) = 2(~+cos 0)+~-(1-9sin2 0) 
2(cos 0 + sin 2 0) [4.17] 

The function [4.17] tends to infinity as 0 comes to 0 ,  which is a root of an equation 

cos 0 , +  sin 2 O, = O. [4.18] 

Hence 

cos 0 ,  = -0 .62,  ~r - 0 ,  = 51°40 '. [4.19] 

The corresponding values of various functions of 0 ,  involved in above formulae are 

K = 0.095, F = 0.75, • = 7.9. [4.20] 

This brings the analysis to completion. 
Let us emphasize that the same reasoning is also applicable to a large bubble or drop moving in 

an extended liquid. In this case one obtains in a similar manner an equation 

211 + (1 + ¢) cos 0] - 9 y2(1 _ 2¢) sin 2 0 = 0 [4.21] 

replacing [4.16] and other equations of exactly the same form as [4.18]-[4.20]. That is why [4.19] 
permits solution of the famous problem in Davies & Taylor (I950) in that not only a relation 
between the rise velocity and the curvature radius is known but also [4.1], enabling this radius to be 
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found in terms of the bubble volume. There is a significant scatter of experimental values of zr - 0,  

varying for large bubbles from 46 ° to 64 ° (Batchelor 1970). A thorough analysis of very large 

bubbles, when surface tension effects are surely of no importance, gave 7r - 0 ,  ~ 50 ° (see, e.g. 

Davenport et al. 1967). 
Surprisingly enough, this value of the semi-vertical angle is in a good agreement with the result 

[4.19], the latter being merely a qualitative one. This agreement encourages one to proceed to the 
investigation of the surface tension influence upon the bubble form. It is not difficult to derive an 
equation 

[ si+0 ( l + ( l + ~ ) c o s O - ] 3 " 2 ( 1 - 2 ! : , ) s i n 2 0 - W  2~+ smO~--~ =0,  
Ip 

[4.22] 

which reduces to [4.21] when a parameter 

o" 
W = (d,  - do)ga 2 [4.23] 

goes to zero, cr being the surface tension coefficient. Here do and d, are understood as the densities 

of the inner and external fluids and 3' is defined by [3.4], w~ playing in this case a role of the bubble 
rise velocity. Equation [4.22] is a differential equation of the second order which can be solved 

numerically at any W. Unfortunately, its solutions g(0, W) increase with 7r - 0 in a smooth 
manner, without tending to infinity when 0 turns to some finite value 0,(W), and there is no critical 
value of O which could be unambiguously associated with 0,. Nevertheless, when confining 
ourselves with a qualitative analysis, it is certainly of use to study solutions of [4.22] at different IV. 
The dependence of a value of zr - 0 ,  defined by a requirement ~(0,) ~ 10 upon the parameter W 
from [4.23] is shown in figure 4. It can be clearly seen that a rather small W induces a drastic change 

to the angle ~r - 0 ,  as compared with ~r - 0,  at W = 0. Thus, no matter how small parameter W, the 
scatter of observed values of 0 ,  can be presumably attributed to the action of surface tension 
forces. 

Turning again to discussion of fluidization bubbles encountered in practice one concludes them 
to be somewhat "thicker" than the bubble corresponding to [4.19], that is real values of 7r - 0,  are 
larger than 50 ° . This seems to be due to the action of an effective "surface tension", being displayed 

on boundaries between a fluid-solid mixture and the pure fluid, in the same way as is the case for 

bubbles in liquids. A detailed study of processes occurring at such boundaries was carried out in 

Buyevich & Gupalo (1970) where a physical origin of forces resembling those of true surface 
tension and a model allowing these forces to be evaluated were put forward. To judge by results 
obtained there, the effective surface tension coefficient must vary along the bubble surface and its 

mean value representing a monotonously increasing function of u~ can amount to several dynes 
per centimetre.t 

In conclusion, we point out one important consequence which is usually ignored. Although the 
bubble growth caused by the regular inflow of the fluid phase may be insignificant in many cases as 
compared with the growth of real bubbles due to coalescence, the former is of primary importance 
while treating mass and heat exchange processes between bubbles and the "continuous" phase of a 

fluidized bed. Really, the radial motion of the fluid flowing into a bubble makes conditions for 
approach of some dispersed substance to the bubble far more favourable. On the other hand, the 
same flow hinders to an essential extent the transfer in the opposite direction, i.e. from bubbles to 

t in this connection the author wishes to stress that the above remarks on possible influence of surface tension effects upon 
the form of bubbles in both one-phase liquids and fluidized beds have to be understood as purely suggestive or thought-leading 
ones. There are too many complex physical factors involved and each of them needs further clacitication so that there remains 
much work to be done in order to elucidate this point quite unambiguously. Nevertheless, it is the private author's opinion that 
the effective surface tension has more to do with the observed bubble form (at any rate, for bubbles within a fluidized bed) than, 
for example, viscosity effects which are hardly of especial importance because of mobility of the free bubble surface. 
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Figure 4. The dependence of the semi-vertical angle defining the form of large bubbles in liquids upon the 
Weber number (see explanations in the text). 

the continuous phase. Keeping in mind that the specific heat capacity of bed particles exceeds 
considerably, as a rule, that of the fluid phase, we are able to conclude the radial particle motion 
induced by growing bubbles to have even more substantial influence on heat transfer between 
bubbles and the continuous phase. 

These effects are not taken into account in the majority of papers on this subject (see, for 
example, recent papers by Drinkenburg & Rietema 1972, 1973). However, a preliminary 
order-of-magnitude consideration evidences that the radial flow of both phases exerts under 
certain conditions a decisive influence on heat and mass exchange processes in fluidized beds and 
must be incorporated in any modern analysis of these processes. 
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R~sum6--On pr6sente un module pour une seule bulle bien d6velopp6e, se dc~pla~:ant dans un lit fluidis6 infini. Le 
module prends en compte la croissance ou la d6croissance d'e la bulle pendant son ascension au sien du lit et permet 
d'expliquer I'influence des param~tres du lit sur la vitesse de mont6e de la bulle. Les cas-limites de bulles presque 
sph&iques et de bulles suffisamment grosses dont la forme ressemble ~ celle d'un segment de sphere sont examin6s de 
fagon plus d6taill6e. On discute de la forme des bulles montant soit dans un lit fluidis6 soit dans un liquide 
monophasique et de la fagon dont elle d6pend de la "tension superticielle" effective ~t la fronti&e de la bulle. 

Auszug--Fuer eine einzelne, sich in einem unbegrenzten Fliessbett bewegende Blase wird win Modell entwickelt. Es 
gestattet, das Wachsen oder Einschrumpfen der Blase waehrend ihres Aufsteigens im Bert, wie auch die Abhaengigkeit 
der Aufstiegsgeschwindigkeit yon den Fliessbettparametern'zu erklaeren, Die Grenzfaelle fast kugelfoermiger Blasen, 
und yon Blasen ausreichender Groesse und yon kugelsegmentaehnlicher Form, werden eingehender betrachtet. Die 
Form yon Blasen, die entweder in Fliessbetten oder in einohasigen Fluessigkeiten aufsteigen, und ihre Abhaengigkeit 
yon einer effektiven, in der Grenzschicht wirkenden "Obertiaeehenspannung" wird besprochen. 

Pe3mMe--Ylpe~L~o~ceHa M o R e ~  e~HHH~IHOrO paanHToro ny3bipg, ~J~Hxcyttleroca B HeorpaHgqeHHOM 
IICCB~OO)KHYx(eHHOM CJIOe. Mo~Ie~tb rlO3BOJI~IeT O~'b$1CHHTb pOeT ~ yMeHbIIIeHge O ~ M a  riy3blpfl 
nO Mepe n o ~ e M a  B caoe,  a TaK~e 3aaliCHMOCTb cKopo~rH IIO~%eMa OT napaMeTpOB ¢.qos. Ho~po6Hee 
pacCMOTpeH~I npelIe~IbHLIe C03y~aH Ma~blX HpH6~IH3HTeJTbH0 c¢~epH~eClCJ~x ny31dpeit H 60~IbmHx 
ny3b]pe~, ~opMa KOTOp/aIX HaHOMHHaeT ccl~ptl,lec~Hlt CeFMeHT. O6cyz~eHa ~opMa IcpyrlHblX 
ny3bipefi, FIO.~MHMatOHJ.HXCfl KaK n HCeB~tOOXHZ~eHHOMC31Oe, TaK H B O,~HO(I~a3HO~ ZKH~KOCTH, 
no~!qepKHBaeTcg ec 3aBHCHMOCTb OT 3~cl)eKTHBHOFO (¢IIoBepXHOCTHOFO HaTg)KeHILq>>, aei~crey~amero 
Ha rpanHxle ny3~ps .  


